Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans

William Palmer-Brown1, Brian Dunne1, Yannick Ottin2, Mark Fox3, Graham Sandford2 and Cormac D. Murphy1*

1School of Biomolecular and Biomedical Science and 2School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland

3Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK

Introduction:

A strategy for increasing the metabolic half-life of a drug is to introduce a fluorine atom at metabolically labile sites1. A chemical motif that has become more commonly used in pharmaceuticals is the fluorophenyl pyridine system, exhibited by Fig.1.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{Structures of the recently FDA-approved fluorinated drugs Sivestroa and Zentivitya}
\end{figure}

Previous investigations have demonstrated that microbial biotransformation of drug candidates can reveal sites vulnerable to oxidative attack2. To study the motif shown in Fig.1, we examined the biotransformation of various fluorophenyl pyridine carboxylic acids (Fig. 2) as model compounds.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{Structures of the fluorophenyl pyridine carboxylic acids}
\end{figure}

Biotransformation of fluorophenyl pyridine carboxylic acids:

The fungal microorganism Cunninghamella elegans, widely studied as a model for mammalian drug metabolism2, was selected for the study. The compounds were incubated with \textit{C. elegans}, with subsequent metabolites extracted for further analysis.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{Hydroxylated biotransformation products 6-11 formed upon incubation of pyridine carboxylic acids 1, 2, 3 and 5.}
\end{figure}

With exception of 4, \textit{C. elegans} effectively transformed all of the (fluoro-) phenyl pyridine carboxylic acids (Fig.3). GC-MS and NMR identified alcohols and hydroxylated carboxylic acids as metabolites.

Metabolic stability:

A quantitative method using 19F NMR was developed to examine the degree of transformation (Table 1) for each compound. A 24-hour biotransformation study was performed using 2 mg of starting material.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Compound} & \textbf{Substrate} & \textbf{Fluorometabolite(s)} & \textbf{Compound} & \textbf{Yield} \\
\hline
1 & -112.5 & -135.6 & 8 & 95\% \\
2 & -118.6 & -116.9 & 9 & 22\% \\
3 & -113.2 & N.D. & \\
4 & -116.7 & -114.0 & -117.5 & 10 & 11 & 36\%, 59\% \\
\hline
\end{tabular}
\caption{19F NMR analysis of the biotransformation products 8-11 from compounds 2-5 in \textit{C. elegans} (N.D. Not detected).}
\end{table}

Orbital density and atomic charge calculations:

Calculated frontier orbital density distributions (Table 2) confirm the regioselectivity for compounds 1-3 and 5, where the highest HOMO densities are found at the 4' carbon sites. Interestingly, the calculated atomic charges for C4' of all the substrates reveal that compound 2 has the highest negative charge (Table 2), which might account for this compound being more readily hydroxylated than compound 3.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{Compound} & \textbf{C2} & \textbf{C3} & \textbf{C4} & \textbf{C5} & \textbf{C1'} & \textbf{C2'} & \textbf{C3'} & \textbf{C4'} & \textbf{C5'} \\
\hline
\textbf{LUMO} & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\textbf{HOMO} & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 & 8.0 \\
\textbf{Charge} & 0.016 & 0.046 & -0.168 & 0.059 & 0.013 & 0.091 & -0.250 & 0.358 & -0.103 & -0.155 & 0.170 \\
\hline
\textbf{Compound} & \textbf{C2} & \textbf{C3} & \textbf{C4} & \textbf{C5} & \textbf{C1'} & \textbf{C2'} & \textbf{C3'} & \textbf{C4'} & \textbf{C5'} \\
\hline
\textbf{LUMO} & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\textbf{Charge} & 0.017 & 0.046 & -0.166 & 0.070 & 0.022 & 0.014 & 0.028 & 0.134 & -0.127 & -0.132 & 0.176 \\
\hline
\end{tabular}
\caption{Calculated frontier orbital densities (%) and atomic charges (a.u.) on aromatic carbons of 2 and 3}
\end{table}

Mammalian biotransformation:

- An \textit{in vitro} method using rat liver microsomes was developed for comparison.
- No biotransformation products were detected by GC-MS.
- As a positive control, flurbiprofen was incubated with various concentrations of 2 (Fig.4).
- Fluorophenyl pyridine carboxylic acids are most likely inhibitors of microsomal preparations.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig4.png}
\caption{Total ion chromatograms of the microsomal biotransformation product of flurbiprofen formed in the presence of various concentrations of 2.}
\end{figure}

Conclusion:

- \textit{Cunninghamella elegans} is able to produce hydroxylated metabolites of fluorophenyl pyridine carboxylic acids and can serve as an effective alternative for \textit{in vitro} assessments of xenobiotic biotransformation.
- Extent and regioselectivity of hydroxylation was dependent on the position of the fluorine substituent.

References: